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Abstract

This paper develops a framework for addressing the omitted variable bias that plagues

most real estate research. We incorporate qualitative information from text to con-

trol for property attributes that are generally unobserved. The textual information

is entered by real estate agents for every property sold on a Multiple Listing Service

(MLS). The agents, who arguably have the most local market and property specific

knowledge, use the unstructured text to highlight important information that is not

clearly conveyed in other areas of the listing. Although the framework can be applied

universally in real estate research, we demonstrate its effectiveness in the estimation of

agent-owned sales premiums. Similar to previous studies, we find agent-owned premi-

ums between 2% to 6% when no textual information is included. When we include the

textual information the agent-owned premiums dissipate. The results suggest that the

market distortions reported in Rutherford et al. [2005] and Levitt and Syverson [2008]

do not exist.



1 Introduction

Empirical results in real estate research are often reported with a disclaimer that they may

suffer from an omitted variable bias. Two of the most commonly cited omitted variables are

the condition and quality of the property.1 Researchers recognize that property condition

and quality are likely correlated with other observable variables (e.g. physical characteris-

tics, neighborhood amenities, distressed sale conditions) that are incorporated into hedonic

models. The “bias” occurs when the model compensates for the omitted variables by over- or

underestimating the effect of the other observable variables. Multiple listing service (MLS)

and tax assessor data typically do not include accurate measures of property condition or

quality at the time of sale.2 Techniques to address omitted variable bias, such as including

house fixed effects in a repeat sale model, assume that house condition and quality remain

constant. Although quality may remain constant over time, condition is expected to change

because of deterioration and renovation.3

In their examination of preferences for schools and neighborhoods Bayer et al. [2007] note

that they do not

“address the possibility that the higher-income households on the higher test

score side of a school boundary might be more likely to make home improve-

ments (install granite countertops, e.g.) unobserved by the researcher, in turn

contributing to the higher average house prices on that side of the boundary.

That said, we are unaware of any paper in the literature that has been able to

deal with this issue.”

In this paper we propose a new approach for addressing the omitted variable bias described

1Property condition and quality are two different measures. Property condition is a time-varying measure
of how well the property has been maintained. Whereas, property quality is a time-invariant measure of the
workmanship and materials used in the property’s construction.

2County tax assessor datasets include a CDU (condition, desirability and utility) grade for each property.
The CDU grade is often unreliable because the county’s appraiser does not enter the house post-construction.

3The constant quality assumption does not always hold as large scale renovations (obsolescence) may
increase (decrease) house quality over time.
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in Bayer et al. [2007]. We show that the public remarks section of the MLS includes relevant

information about the time-varying and time-invariant property features that contribute

to omitted variable bias. The public remarks section allows the listing agent, who is the

only professional to enter and evaluate the interior of the house, to provide a description

of the property beyond what is captured in the standard MLS fields.4 Given its limited

length, listing agents use the public remarks section to highlight important information

(i.e. property quality, property condition, seller motivation, purchase incentives) that is not

clearly conveyed in other areas of the listing. We incorporate the qualitative information

from the public remarks section to remedy the omitted variable bias - thereby addressing

the concerns in Bayer et al. [2007].

The approach we present can be employed universally across all real estate research. In

this paper we demonstrate its effectiveness in the estimation of agent-owned sales premiums.

We examine agent-owned sale premiums because they represent a rare example of a principal-

agent conflict that offers a clean identification strategy. When real estate agents list their

own house for sale on the MLS they are required by law to notify potential buyers that

the principal (i.e. the agent who is selling the house) holds a real estate license.5 Seminal

studies on the topic by Rutherford et al. [2005] and Levitt and Syverson [2008] argue that

listing agents, who are better informed than their clients, use their informational advantage

to sell their own house for a higher price than their clients’ house. Both studies find that

agent-owned houses sell for a premium relative to non-agent-owned houses. Rutherford et al.

[2005] find a 4.5% premium using data from Texas between 1998 and 2002 and Levitt and

Syverson [2008] find a 3.7% premium using data between 1992 and 2002 from Illinois.

4Even appraisers who play a critical role in lenders’ underwriting decisions rely on MLS listing information.
For example, Young [2012] states that “today’s appraisers are required to rate property conditions of both
subject properties and comparables using a numerical scale from C1 to C6. Where do they get the information
needed to make these ratings? Typically from the information that is provided in the MLS listing by the
listing agent, including photos, remarks, and descriptions of physical features found in the various fields for
listing input. As appraisers rely on the information found in the MLS, the more descriptive and accurate
that information is, the better appraisal reports can be.”

5For example, Rule 520-1-.09 (8) of Georgia’s Administrative Code states that “A licensee shall not
advertise to sell, buy, exchange, rent, or lease real estate in a manner indicating that the offer to sell, buy,
exchange, rent, or lease such real estate is being made by a private party not licensed by the Commission.”
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Rutherford et al. [2005] and Levitt and Syverson [2008] conclude that real estate agents

do, in fact, exploit their informational advantage when selling their own house. However,

both studies note that agent-owned houses systematically differ from those of their clients

and report their results with the usual caveat that the agent-owned estimates may suffer

from an omitted variable bias. For example, Rutherford et al. [2005] note that “another

possible explanation is that owner-agents initially buy higher quality properties” and Levitt

and Syverson [2008] note that “a particular concern is that agents live in houses that are

especially attractive along dimensions that are difficult to observe or quantify.” Rutherford

et al. [2005] attempt to address this concern by including a quality measure from the county

appraisal board for a small subsample of the properties in their study. Whereas, Levitt

and Syverson [2008] take an approach similar to the one we advocate in this paper. They

add indicator variables for nearly 100 keywords used in the written marketing description of

the house.6 The two studies take different approaches to address the omitted variable bias

concern, but in the end both conclude that agents sell their own house for a premium.

We address the omitted variable bias using qualitative information from the public re-

marks section of the MLS. In addition to including information about property condition,

our approach incorporates other salient time-varying (seller motivation, purchase incentives)

and time-invariant (quality, amenities) features of the property that may bias agent-owned

premium estimates. We apply the approach using MLS data from Atlanta, Georgia and

Phoenix, Arizona. Similar to previous studies, we find agent-owned premiums in the 2% to

6% range when the qualitative information is not included. After incorporating the qualita-

tive information from the public remarks the agent-owned premium ceases to exist. Contrary

to previous studies, the results suggest that an agency problem does not exist and that real

estate agents do not exploit their informational advantage when selling their own house.

6 Levitt and Syverson [2008] do not describe their variable selection process, so it is unclear how the
keywords were chosen. The authors also note that they selected several keywords that are either “superficially
positive”, redundant, or “do not describe particular characteristics of the house”.

3



2 Theory and Estimation

2.1 Hedonic Pricing Model

Consider the hedonic model in equation 1 where price of house n at time t is linear in date

of sale, t, observable time-varying attributes, xnt, observable time-invariant attributes, zn,

unobserved time-varying attributes, ψnt, unobserved time-invariant attributes, µn, and a

disturbance term, ent.

pnt = wntδ + xntβ + znθ + µn + ψnt + ent (1)

Here, wnt ∈ RT is a basis vector of 0s except for a 1 in the t position, xnt ∈ RKx includes time-

varying attributes such as square footage, age, bedrooms, and bathrooms, zn ∈ RKz includes

zip code or census tract fixed effects that capture time-invariant property and neighborhood

attributes such as local schools, parks, or water access. In Equation 1, δ = (δ1, ..., δT )′ is

the vector of the time-varying market-wide value of housing. Although Wallace and Meese

[1997] provide evidence that β and θ are time-varying, for simplicity, we assume they are

time-invariant parameters. Throughout, without loss of generality, we also assume ent is

a zero mean, independent random variable. The unobserved time-varying attributes, ψnt,

include the condition, seller motivation, and other features of the house that change over

time. Whereas, the unobserved time-invariant attributes, µn, include features of the house,

such as its quality, that remain constant over time. By definition, only observable attributes

are included in the hedonic regression estimated as shown in Equation 1.

pnt = wntδ + xntβ + znθ + unt (2)

The term unt = µn + ψnt + ent is a composite term including relevant unobserved at-

tributes and the error term. Agent-owned premiums are estimated by including an in-

dicator variable for agent-owned transactions in xnt. Specifically, gnt = 1 if the sale is
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an agent-owned transactions and gnt = 0 otherwise. Under the orthogonality conditions

E[xntunt] = E[znunt] = E[wtunt] = 0, the coefficient estimate for the agent-owned transac-

tion is unbiased. However, when one or all of these conditions are not met, the estimating

equation suffers from an omitted variable bias, and the coefficient for agent-owned transac-

tions is biased.7 As mentioned above, these conditions are violated if agent-owned transac-

tions are in superior condition relative to non-agent-owned houses E[gntψnt] > 0 or if agents

are more likely to purchase and subsequently sell high quality properties E[gntµnt] > 0.

The omitted variable bias may not be resolved when a repeat-sales estimator approach

is taken a la Mayer (1998).8 Differencing Equation 1 gives us:

∆pnt = pnt − pns = ∆wntδ + ∆xntβ + ∆ψnt + δent (3)

Similar to the hedonic model, an unbiased estimate of the agent-owned premium requires

E[∆xntψnt] = 0.9 Unlike the hedonic model, an unbiased agent-owned premium in the

repeat-sales estimator does not require any assumptions about the correlation between agent-

owned transactions and quality. In any event, agent-owned properties with superior main-

tenance (i.e. excellent condition) will still bias agent-owned premium estimates.

2.2 Textual Analysis

We address the omitted variable bias concern using qualitative information from the public

remarks section of the MLS. Augmenting the standard attribute fields in the MLS with

information from the public remarks section is not entirely new. Levitt and Syverson [2008]

use “nearly 100 indicators for keywords included in the written description of the home

(such as spacious, amazing, granite, youthful)” in their examination of agent-owned real

7Even when E[gntunt] = 0, the coefficient for is still biased unless it is uncorrelated with the other
variables in the regression.

8The use of the three-stage generalized least squares (GLS) methodology proposed by Case and Shiller
(1987) addresses some concerns. However, Case and Shiller use the methodology to create a repeat sales
index, so they are only interested in estimating the time coefficients.

9In addition, we also require E[∆wntψnt] = 0 but this is not the focus of the paper.
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estate transactions. Ben-David [2011] identifies houses with inflated prices by examining “the

textual description of the properties for clues”, although he does not include the variables

in his empirical analysis. In both studies, the keywords were chosen by the researchers.

Nowak and Smith [2017] show that the MLS remarks section contains indicators of both

time-invariant and time-varying property quality and condition. This is not surprising be-

cause real estate agents likely use the remarks section to convey important information that

is not conveyed by the standard attributes of the property (e.g. square feet of living area,

number of bedrooms, number of bathrooms, etc.) Nowak and Smith [2017] use a tokenization

and penalized regression approach in order to (i) select and (ii) identify the implicit price

for keywords in the public remarks section. The tokenization approach views the remarks

as an exchangeable collection of tokens where the tokens are either words or phrases. It is

common to refer to single words as unigrams and two-word phrases as bigrams.

Table 1 includes a sample of property listings for three bedroom, two bathroom houses in

zip code 30043 along with the sale prices and remarks. Although the properties are otherwise

identical in terms of location, bedrooms and bathrooms, there is considerable variation in

the sales price. Several tokens in the remarks can be used to explain the variation in sales

price. For example, the most expensive house has a marble master bath. In contrast, the

least expensive house requires some sweat equity. Still, the property is in a sought after

school district. Following Nowak and Smith [2017] we assume that indicator variables for

specific words or phrases in the remarks can approximate the unobserved attributes. For

example, a listing where the tokens luxury and beautifully renovated appear in the remarks

is likely to have ψnt, µn > 0. In contrast, a listing with the token sweat equity in the remarks

is likely to have ψnt < 0. However, the same listing might also include sought after in which

case µn > 0.

To incorporate the qualitative information we define rnt ∈ RKr as a vector of indicator

variables for the presence of specific tokens in the remarks. We assume that rntγ = µn+ψnt+

εnt where γ is the vector of implicit prices for the tokens and vnt reflects the approximation
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error of the tokens for the true, unobserved attributes. Using this, the price can then be

written as

pnt = gntτ + wntδ + xntβ + znθ + rntγ + vnt + εnt = hntα + vnt + εnt (4)

Here, we separate gnt from xnt for expositional purposes, collect all explanatory variables in

the vector hnt ∈ RK10, and use α ∈ RK for the vector of K parameters.

2.3 Variable Selection Process

The number of unique tokens in the remarks is extremely large. To minimize the approxima-

tion error, one must include indicator variables for hundreds or thousands of tokens. Doing

so directly increases the total number of variables in the model. It is well known that a

least-squares estimator that includes a large number of variables is intractable at worst or

overfits the data at best. Dropping the less frequent tokens from the analysis is not recom-

mended as there is no guarantee that the most frequent tokens will have the most predictive

power. Of course, it is possible that some tokens are redundant. For example, the bigrams

sweat equity, handyman’s delight, and fixer upper are all euphamisms for properties in poor

condition. However, without ex ante knowledge of the relationship between these tokens,

it is not possible to reduce the number of tokens by using one of these euphamisms as a

stand-in for the other two.

Noting the tradeoff between approximation error and overfitting, Nowak and Smith [2017]

include a large number of tokens, place an `1 penalty on the coefficients and choose a to

minimize11

∑
n

(pnt − hnta)2 + λ
∑
j

|aj| (5)

In Equation 5, the first term is the total sum of squares, and the second term is a penalty

10K = T +Kx +Kz +Kr
11The `1 norm of a vector x is given by ‖x‖1 =

∑
k |xk|.
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term for the coefficients. Define the minimizer of Equation 5 as âLASSO. Furthermore,

define ŜLASSO ⊂ {1, ..., K} as the support of the non-zero coefficients in âLASSO where

ŜLASSO = {k|âLASSO 6= 0}. Likewise, define hnt(ŜLASSO) as the set of variables in the

support. The variable λ determines the size of the penalty. When λ = 0, there is no penalty

on the coefficients and âLASSO is the least-squares solution. As λ → ∞, the penalty on

non-zero coefficients increases and âLASSO → 0. The choice of λ is either based on theory

or cross-validation. The estimator in Equation 5 is known as the LASSO estimator in the

literature, Tibshirani [1996].12

The shape of the `1 norm implies that some coefficients can be set equal to 0 at the

optimum for λ between 0 and ∞. When a coefficient is equal to 0, that coefficient does

not have predictive power in the model. An alternative interpretation is that the LASSO

estimator simultaneously performs variable selection and coefficient estimation. In a real

estate setting, Nowak and Smith [2017] find the tokens in rnt have a significant amount of

predictive power.

The penalty in Equation 5 biases the âLASSO towards 0. To correct for this bias, Cher-

nozhukov et al. [2015] describe a two-step procedure that exploits the variable selection

feature of the LASSO. They suggest the following:

1. Minimize Equation 5 and collect âLASSO with support ŜLASSO.

2. Regress pnt on hnt(ŜLASSO) and gnt.

The two-step procedure identifies variables with significant predictive power; however, the

coefficients in âLASSO are biased. Regressing pnt on the variables in ŜLASSO yields unbiased

estimates. Hypothesis testing is performed using heteroskedastically consistent standard

errors.

The variables in ŜLASSO are chosen based on their predictive power for pnt - which is not

the focus of this study. Instead, we are interested in using the tokens in rnt to mitigate the

12LASSO: Least Angle Selection and Shrinkage Operator
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omitted variable bias by proxying for µn + ψnt. Of course, there is no guarantee that the

variables in ŜLASSO will effectively control for the omitted variable bias. With the explicit

goal of estimating τ , Belloni et al. [2014] present an auxiliary estimation that can be used

to identify variables not included in ŜLASSO that are relevant for unbiased estimation of τ .

Using gnt as the dependent variable, Belloni et al. [2014] specify the auxiliary equation

gnt = wntδ + x
(−g)
nt β + znθ + rntγ + vnt = h

(−g)
nt α(−g) + vnt (6)

Here, h
(−g)
nt ∈ RK−1 is the vector of variables excluding gnt, and α

(−g)
nt ∈ RK−1 is the associated

vector of parameters.

The procedure described in [Belloni et al., 2014] for unbiased estimation of τ proceeds in

the following manner

1. Minimize Equation 5. As above, define the minimizer as âLASSO with support ŜLASSO.

2. Minimize Equation 5 using gnt as the dependent variable and h
(−g)
nt as the explanatory

variables. Define the minimizer as â
(−g)
LASSO with support Ŝ

(−g)
LASSO.

3. Create the intersection of the supports as ŜBCH = Ŝ
(−g)
LASSO∩ ŜLASSO and the associated

set of explanatory variables hnt(ŜBCH).13

4. Regress pnt on hnt(ŜBCH) and gnt and calculate heteroskedastically consistent standard

errors.

The multi-step procedure identifies the relevant variables for unbiased estimation of τ based

on two predictive equations. The first equation identifies the variables that predict pnt; the

second equation identifies the variables that predict the agent-owned indicator, gnt.
14 Thus,

13Obviously, the intersection should take into account the change in the number of variables from K to
K − 1.

14The multi-step process helps address the omitted variable bias present in the estimation of agent-owned
premiums. To ensure the equations do not select redundant factors we remove words and phrases that are
perfect substitutes for the agent-owned indicator variable. The words that are removed include owner is
agent, agent is owner, seller is agent, owner is real estate agent, etc. A complete list is available from the
authors.
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the multi-step process selects variables that are relevant for 1) pricing and 2) reducing the

omitted variable bias. Whereas, the two-step process in Chernozhukov et al. [2015] focuses

solely on pricing and does not address the omitted variable bias.

3 Data

We examine agent-owned transactions using MLS data from Atlanta, Georgia and Phoenix,

Arizona. The Atlanta data covers the five counties (Clayton, Cobb, DeKalb, Fulton and

Gwinnett) that form the core of metro-Atlanta and was provided by the Georgia Multiple

Listing Service (GAMLS). The GAMLS data set includes single-family detached houses that

were sold using the services of a real estate agent between January 2000 and September

2016.15 The Phoenix data includes all transactions in Maricopa County and was provided

by the Arizona Multiple Listing Service (ARMLS). Maricopa County covers both the city

of Phoenix and the surrounding cities including Glendale, Mesa, Scottsdale, Tempe. The

ARMLS data set includes single-family detached houses that were sold using the services of

a real estate agent between January 2000 and December 2013.

Both MLS data sets contain extremely detailed information including the house’s ad-

dress, physical characteristics (square feet living area, bedrooms, bathrooms, etc.), listing

information (list price, agent-owned, vacant, etc.), transaction details (time-on-market, sales

price, etc.), and a written description about the house that the real estate agent uses to

market the house.16 We use the written description to create the remarks variable, rnt, in

Equation 4.

Prior to running the empirical analysis, we impose a number of restrictions on both MLS

data sets. We geocode the data using the property address listed in the MLS to obtain

location controls (census tract and zip code) for the empirical analysis. Property addresses

15The agent-owned variable was not populated in the GAMLS data until 2008, so the empirical analysis
for Atlanta includes every transaction between January 2008 and September 2016.

16The GAMLS data does not consistently report the square feet of living area, so we match the properties
to county tax assessor records obtained from CoreLogic.
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that are not geocoded are dropped. Using the geocoded address we create a unique identifier

that allows us to link listing and sales activity on a given property over time. We remove

records for which data on variables of interest are missing or contain invalid values. To

eliminate outliers and minimize data errors, we exclude houses with less than 1 or more

than 6 bedrooms or bathrooms, lot sizes above 5 acres, and sales prices less than $30,000 or

greater than $3,000,000. We also remove houses that are less than one year old (i.e. new

construction). The filters are comparable to those employed in Levitt and Syverson [2008].

Summary statistics for the cleaned data sets are displayed in Tables 2 and 3.

4 Results

4.1 Variable Selection

Unigram and bigram tokens are both incorporated in the empirical analysis. The results

are similar, so we only report on unigrams going forward. Remember, not every token (i.e.

unigram) is included. Only tokens selected using the methods in [Belloni et al., 2014] are

included in a least-squares regression as control variables. For practical purposes, we begin

with a candidate set of the 2,000 most frequent tokens. Similar to the results in Nowak and

Smith [2017], our main results and conclusions do not change in a meaningful manner when

using a larger set of 3,000 candidate tokens.17

In the token selection procedure in Eq 5 and Eq 6, we include quarter fixed effects and

zip code fixed effects. We choose zip code fixed effects for three reasons. First, our main

conclusions are unaffected when including more granular fixed effects for either census tract or

census block. Second, census tract fixed effects have been shown to overfit in-sample [Nowak

and Smith, 2017]. Third, we found zip code fixed effects are computationally tractable.18

17The results when using 3,000 candidate tokens are included in the online appendix.
18We used the hdm package in R to estimate the heteroskedastic LASSO as in Belloni et al. [2014]. Com-

putation time for the heteroskedastic LASSO using a Macbook Pro with 8GB of memory and a 2.7 Ghz
Intel Core i5 was approximately 30 minutes using using 2,000 candidate tokens and zip code fixed effects.
Computation time on the same machine with additively separable census tract fixed effects was more than
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We also include indicator variables for square footage, bedrooms, and bathrooms. Age

enters into the hedonic function linearly. We find these specifications allow for possibly

important nonlinear relationships in the true hedonic price function while also providing

easily interpreted coefficients. Least-squares coefficient estimates for the indicator variables

are presented in Table 4 and 5. The second column present the results without tokens and the

third column presents coefficient estimates when the tokens are included in the regression.

The primary contribution of this study is the inclusion of the tokens in ŜBCH in the final

hedonic model alongside the standard attributes described above. The tokens in ŜBCH are

estimated by minimizing Eq 5 and Eq 6. In doing so, we do not penalize the time or zip code

fixed effects. In total across all subperiods and for both cities, we select approximately XXX

of the 2,000 candidate tokens that explain price in ŜLASSO and XXX tokens that explain

the agent-owned indicator in Ŝ
(−g)
LASSO. In total, there are X,XXX unique tokens from both

of these sets in ŜBCH .

By including the indicator variables for the tokens in the least-squares estimating equa-

tion, we are able to estimate implicit prices for each token in ŜBCH . However, similar to

others in the machine learning literature, such as Mullainathan and Spiess [2017], we refrain

from a strict interpretation of these coefficient estimates as the true price associated with a

given token. If anything, we favor an interpretation similar to the inverse regression approach

in Taddy [2013] where the likelihood of the appearance of any given token in the remarks is

determined by the true condition of the property. More importantly, removing the phrase

fixer upper from a description while not making any repairs to the property is unlikely to

increase its sales price.

For informational purposes the 20 positive and negative coefficients with the largest

magnitudes are presented in Figure 1. For interpretation, we present results using the raw

tokens in the data.19 A significant number of negative tokens directly refer to a property

3 hours. Computation using multiplicatively separable census tract fixed effects was infeasible on this same
machine.

19An alternative is to stem the words in which case investors, investor, investment are all set to invest.
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in poor condition (needs, investor, steal) as well as tokens includes in euphamisms for poor

condition (fixer upper, handymans delight, and sweat equity).

4.2 Agent-Owned Transactions

Results for Altanta are presented in Table 6. Panel A presents the results for the entire

time period, 2008-2016. The first column includes the aforementioned standard property

attributes and quarterly fixed effects. The agent-owned premium in this model is -2.1%.

Column 2 adds zip code fixed effects and the agent-owned premium jumps to 5.5%. Model

3 allows each zip code to have its own quarterly price trend. The agent-owned premium in

column 3 (5.5%) is comparable to the specification with homogenous price trends.

Although the estimates in columns 1-3 control for differences in the standard house

characteristics, they do not control for the property’s condition or quality. Column 4 includes

the tokens in ŜBCH alongside the standard house characteristics and the additively separable

quarter and zip code fixed effects used in column 2. In total, we use X,XXX=Y,YYY - ZZZ

tokens.20. When these controls are included, the agent-owned premium declines to 0.7% and

is no longer significant. Results for the heterogenous zip code price trends are reported in

column 5. The agent-owned estimate is comparable to case when using additively separable

quarter and zip code fixed effects.

Given the large number of tokens we include in columns 4-5, it is reasonable to ask if there

is any information in the tokens we did not select. In order to answer this, we include XXX

of the 2,000 candidate tokens that are in the complement of ŜBCH as regressors alongside

the standard attributes in column 2. In doing so, we ask the question “does the Belloni

et al. [2014] variable selection procedure select enough tokens?” The short answer is yes.

The agent-owned premium reported in column 6 is 3.6%. Although the discount is less than

the 5.5% reported in column 2, the estimate is hardly comparable to the estimate in columns

4 and 5 when the tokens in ŜBCH are included. Thus, the Belloni et al. [2014] procedure

20This is calculated as the difference in the number of variables included in the regression displayed in
Table ??
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identifies a significant amount of pricing information represented in the MLS remarks.

Of course, the results in Belloni et al. [2014] are asymptotic and guaranteed to hold

only approximately in a finite sample. Alternatively, a natural criticism is that by including

many regressors we are overfitting the data in-sample and reporting a misleading agent-

owned estimate. We assuage this critique using a permutation of the remarks. Specifically,

we permute the remarks by randomly sampling the remarks without replacement and treat

these remarks as the true remarks. We then create token indicators using the ŜBCH estimated

using the true remarks. Results for this experiment are reported in column 7. The agent-

owned premium reported in column 7 is nearly identical to the estimate reported in column 2.

Thus, it does not appear as though the estimates in columns 4-5 are the result of overfitting.

Instead, they are the product of the approach’s ability to accurately identify the set of tokens

that indicate the true condition and quality of the underlying property.

Panels B and C of Table 6 examine our method across two subperiods (bust and recovery)

of the housing cycle in Atlanta. The subperiods were chosen based on a visual inspection

of the price trends exhibited in Figure 2. The agent-owned premiums reported in columns

2 and 3 are greater during the bust period of 2008-2011, but remain insignificant once the

qualitative information from the public remarks is added as a control in columns 4 and 5.

Similar results are reported for Phoenix in Table 7 for the entire period (2000 - 2013) and

several subperiods. The subperiods were chosen based on a visual inspection of the price

trends exhibited in Figure 3. They represent pre-boom, boom, bust, and recovery periods in

Phoenix. The results in these subperiods are comparable to the results presented in Panel

A for the full sample. Although the magnitude of the estimates are smaller for agent-owned

premiums in Phoenix, the results are similar to Atlanta. Columns 2 and 3 of Panel A suggest

that agents sell their own houses for a 1.0% to 1.4% premium. However, in column 5 when

each zip code has its own price trend and the qualitative information from the remarks is

included, the premium is no longer economically or statistically significant.

The results in Tables 6 and 7 suggest that the agent owned premiums reported in previous
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studies reflect agents purchasing properties of differing quality and condition relative to the

average property in the market. This is in contrast to the incentive problems discussed in

Rutherford et al. [2005] and Levitt and Syverson [2008]. It is also interesting to note that

Levitt and Syverson [2008] select and include indicators for 100 words and phrases in the

MLS remarks. Whereas, the Belloni et al. [2014] variable selection procedure finds more than

X,XXX words that are important when estimating the agent-owned premiums in our study.

The difference in the number of tokens selected highlights the value of machine learning

methods, rather than a limitation of the word list used in Levitt and Syverson [2008]. This

is not surprising as other researchers have recognized that humans perform poorly when

creating word lists from scratch, yet perform well when associating words topics King et al.

[2017].21

4.3 Robustness Check

As a robustness check and to demonstrate the generalizability of our approach, we also

examine vacant house price discounts. Rutherford et al. [2005] include an indicator variable

for vacant houses that identifies when “the owner has already moved and thus needs to sell or

that an investor is holding the house without a tenant.” Although it is not the focus of their

study, Rutherford et al. [2005] estimate that vacant houses sell for a 6% to 7% discount.22

Research on the topic generally attributes the discount to (i) empty houses not showing as

well or (ii) motivated sellers who have less bargaining power.

Although we do not doubt the sign and significance of the results reported in previous

studies, we suspect that the magnitude of the results may be overestimated due to an omitted

21For example, the authors of this study were surprised that a large number of tokens in ŜBCH clearly
indicate property condition ex-post, but would have not been identified as relevant for pricing ex-ante. As
a notable example, the token hates was identified as a relevant token as real estate agents used variants of
the phrase homeowner hates to sell. Despite the intentions implicit in this phrase, none of the authors in
this study would have identified hates as a significant token ex-ante.

22Studies that focus primarily on estimating discounts related to vacant houses, such as Harding et al.
[2003] and Turnbull and Zahirovic-Herbert [2011], report similar estimates. Levitt and Syverson [2008] do
not identify vacant houses in their list of standard attributes or keywords.
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variable bias. A similar concern was raised by Turnbull and Zahirovic-Herbert [2011] who

note that “vacancy might also signal the presence of an unobservable factor that reduces

buyer willingness to pay for the house. The notion here is that vacant houses have undesirable

characteristics that are observed by sellers and buyers but are not reported in the data

(condition, architecture, etc.).” The undesirable characteristics not only reduce the buyer’s

willingness to pay, but also contribute to why the property is vacant to begin with. Thus,

if they are not properly controlled for the magnitude of the vacant house discount will be

overestimated.

We examine whether the “undesirable characteristics” mentioned in Turnbull and Zahirovic-

Herbert [2011] can be controlled for using the qualitative information in the remarks section.

We estimate the vacant house discount using the same approach as the previous section,

except for the use of an indicator for vacant houses in lieu of the indicator for agent-owned

houses. The results for Atlanta and Phoenix are reported for the full study period and sev-

eral subperiods in Tables ?? and ??. ONE TABLE OF ESTIMATES INSTEAD OF TWO?

DESCRIBE RESULTS

5 Conclusion

Real estate agents are experts who hold valuable information. They have the most local

market and property specific knowledge, understand what buyers are willing to pay for, and

know how to market real estate. Real estate agents use the public remarks section of the

MLS to highlight important information, both positive and negative, that is not conveyed in

other areas of the listing. If the qualitative information in the public remarks is not included

in a model and it is correlated with other variables that are included in the model, then the

model will over- or underestimate the effect of the variables that are included.

This paper provides a framework to address the omitted variable bias that plagues most

real estate studies. Although we apply the framework to the estimation of agent-owned
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premiums, it can be applied in any real estate study that attempts to isolate an effect on house

prices. We show that the qualitative information in the remarks section of a MLS listing

can be used to mitigate the omitted variable bias associated with agent-owned premiums.

Using MLS data from Atlanta, Georgia and Phoenix, Arizona we replicate the findings in

Rutherford et al. [2005] and Levitt and Syverson [2008]. The naive estimates suggest that

agents sell their own houses for 2% to 6% more than their clients’ houses. However, after

we incorporate the qualitative information from the public remarks section of the MLS, the

agent-owned premiums dissipate. The results suggest that the market distortions reported

in previous studies are nonextant.

To demonstrate the generalizability of the approach we also estimate price discounts

associated with vacant houses. Similar to previous research, naive estimates suggest that

houses sell for X% less when they are vacant. However, after we incorporate the textual

information the discount drops to X%. The significance of the approach we present is

further augmented by the fact that is applicable to non-real estate assets that are susceptible

to an omitted variable bias. For example, there is a rich literature on adverse selection

and information asymmetry in the used car sales market (see, for example, Bond [1982]

and Genesove [1993]) where the textual description of the used car may include important

information, such as damage to the car or title issues, that should be incorporated.
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Table 1: Sample MLS Listing Zip Code 30043

Zip Code Beds Baths Sale Date Sale Price Remarks
30043 3 2 6/7/13 $270,000 back on market!!! located in tranquil neighbor-

hood with sought-after schools close to shopping
and i-85. this 3 bedroom 2 bath home is beauti-
fully decorated. new roof was installed 3/20/14.
marble master bath is stunning. room for expan-
sion upstairs

30043 3 2 6/16/13 $168,900 wonderful updated one level with vaulted great
room w fireplace & gas logs, formal dining room,
kitchen with corian, newer stove & microwave,
breakfast area overlooks wooded backyard, mas-
ter bedroom suite w/upgraded master bath with
tiled shower & jetted tub

30043 3 2 6/17/13 $150,000 great new listing on 18th fairway of collins hill
golf course**on cul de sac too**no hoa**not
a short sale and not bank owned**pride of
ownership here**new double pane windows**new
roof**updated heat and air***gourmet kitchen
with double gas oven**ss fridge

30043 3 2 5/1/13 $113,500 adorable fannie mae homepath ranch style home
updated and like new with new kitchen appliances,
freshly painted, new carpet. large open living
room with vaulted ceiling and fireplace, kitchen
is spacious with breakfast area, nice master bath-
room with tub shower

30043 3 2 6/16/13 $109,000 4 sided brick ranch with full basement. quick
access to i85,316,mall of ga.large family room
w/fireplace, separate living room and dining room,
kitchen w/eat in b’fast room, laundry room, two
car carport, deck on back. huge fenced in backyard
for kids.

30043 3 2 4/1/13 $96,000 cute 3 bed 2 bath 2-story home in cul-de-sac. great
schools & great location. private fenced backyard.
needs carpet & paint. short sale. hurry before it’s
gone. sold as is no repairs..

30043 3 2 4/1/13 $93,000 nice ranch-style home on level,wooded,fenced cor-
ner lot!vaulted,sun-filled great room with dining
area with wood-laminate floors!master bedroom
has full,private bath.single car carport & charm-
ing front porch. back yard has large walk-in shed.
excellent.

30043 3 2 5/8/13 $86,125 3 bdr 2bth split level home that has tons of po-
tential. great opportunity for investor or first time
buyer willing to put in some sweat equity. great lo-
cation close to shopping and sought after peachtree
ridge high school.
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Table 2: Atlanta Descriptive Statistics

Statistic Min Pctl(25) Mean Median Pctl(75) Max

Sale Price ($1,000s) 30.0 113.4 204.8 161.7 249.0 3,000.0
Square Feet 506 1,546 2,215.5 2,028 2,693 5,999
Bedrooms 1 3 3.6 4 4 6
Bathrooms 1 2 2.3 2 3 6
Year 2000 2,004 2007.9 2007 2012 2016
REO 0 0 0.165 0 0 1
AGENT 0 0 0.009 0 0 1

NOTE : Descriptive statistics for Atlanta, GA.

SOURCE : Georgia MLS and authors’ calculations.
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Table 3: Phoenix Descriptive Statistics

Statistic Min Pctl(25) Mean Median Pctl(75) Max

Sale Price ($1,000s) 11.0 125.9 233.7 182.0 272.4 8,800.0
Square Feet 502.000 1,435.0 1,960.5 1,776.0 2,277.0 5,999.0
Bedrooms 1 3 3.363 3 4 6
Bathrooms 0.0 2.0 2.2 2.0 2.5 6.0
Year 2000 2003 2,006.4 2006 2010 2013
REO 0 0 0.192 0 0 1
AGENT 0 0 0.059 0 0 1

NOTE : Descriptive statistics for Phoenix, AZ.

SOURCE : Arizona MLS and authors’ calculations.
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Table 4: Atlanta REO

Variable Mean Basic Tokens
baths2 0.619 0.224 0.167
baths3 0.203 0.319 0.254
baths4 0.062 0.528 0.420
baths5 0.019 0.677 0.545
baths6 0.003 0.851 0.669
beds2 0.039 0.121 0.097
beds3 0.447 0.148 0.145
beds4 0.362 0.199 0.197
beds5 0.127 0.211 0.214
beds6 0.025 0.169 0.188
sqft500 0.023 -0.104 -0.082
sqft1500 0.264 0.139 0.116
sqft2000 0.202 0.303 0.251
sqft2500 0.140 0.459 0.377
sqft3000 0.079 0.578 0.475
sqft3500 0.043 0.673 0.555
sqft4000 0.024 0.751 0.623
sqft4500 0.014 0.832 0.687
sqft5000 0.008 0.894 0.740
sqft5500 0.005 0.979 0.815

NOTE : Descriptive statistics and implicit prices for hedonic indicator variables in Atlanta,

GA. The variables baths2,...,beds6 are indicator variables for the number of bathrooms and

bedrooms of the property. The variable sqft500 is an indicator if the property has square

footage greater than or equal to 500sqft and less than 1,000sqft. The remaining indicators

for square footage are created similarly. All implicit prices are relative to a 1 bed, 1 bath

property with 1,000-1,500 square footage.

SOURCE : Georgia MLS and authors’ calculations.
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Table 5: Phoenix REO

Variable Mean Basic Tokens
baths0.5 0 -0.013 -0.039
baths1 0.04 -0.058 -0.048
baths1.5 0.114 0.069 0.057
baths2 0.524 0.085 0.071
baths2.5 0.152 0.17 0.132
baths3 0.114 0.192 0.149
baths3.5 0.03 0.253 0.195
baths4 0.012 0.287 0.219
baths4.5 0.008 0.36 0.27
baths5 0.002 0.38 0.277
baths5.5 0.001 0.434 0.323
baths6 0.001 0.438 0.317
beds2 0.105 0.161 0.165
beds3 0.504 0.135 0.168
beds4 0.317 0.112 0.162
beds5 0.066 0.052 0.129
beds6 0.007 -0.031 0.075
levels 1.218 -0.18 -0.116
sqft500 0.026 -0.213 -0.177
sqft1500 0.334 0.218 0.179
sqft2000 0.19 0.457 0.373
sqft2500 0.085 0.671 0.552
sqft3000 0.05 0.84 0.695
sqft3500 0.026 0.986 0.82
sqft4000 0.015 1.117 0.931
sqft4500 0.006 1.274 1.064
sqft5000 0.003 1.427 1.19
sqft5500 0.002 1.567 1.31

NOTE : Descriptive statistics and implicit prices for hedonic indicator variables in Phoenix,

AZ. The variables baths2,...,beds6 are indicator variables for the number of bathrooms and

bedrooms of the property. The variable sqft500 is an indicator if the property has square

footage greater than or equal to 500sqft and less than 1,000sqft. The remaining indicators

for square footage are created similarly. All implicit prices are relative to a 1 bed, 1 bath

property with 1,000-1,500 square footage.

SOURCE : Arizona MLS and authors’ calculations.
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Table 6: Atlanta Owner Agent

PANEL A: 2008-2016
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT −0.021∗ 0.055∗∗∗ 0.055∗∗∗ 0.007 0.008 0.036∗∗∗ 0.056∗∗∗

(0.010) (0.006) (0.005) (0.005) (0.004) (0.005) (0.005)
Num. obs. 154851 154851 154851 154851 154851 154851 154851
R2 0.49 0.83 0.84 0.879 0.887 0.841 0.831
σ̂ 0.514 0.297 0.287 0.25 0.242 0.286 0.296
K 71 180 3766 1269 4855 1003 1269

PANEL B: 2008-2011
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT 0.064∗∗∗ 0.088∗∗∗ 0.082∗∗∗ 0.015 0.013 0.062∗∗∗ 0.087∗∗∗

(0.017) (0.010) (0.010) (0.008) (0.008) (0.009) (0.010)
Num. obs. 46273 46273 46273 46273 46273 46273 46273
σ̂ 0.464 0.292 0.282 0.246 0.237 0.28 0.29
K 49 158 1717 850 2409 473 850

PANEL C: 2012-2016
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT −0.059∗∗∗ 0.048∗∗∗ 0.046∗∗∗ 0.006 0.006 0.031∗∗∗ 0.048∗∗∗

(0.011) (0.007) (0.006) (0.005) (0.005) (0.006) (0.007)
Num. obs. 108578 108578 108578 108578 108578 108578 108578
R2 0.488 0.839 0.845 0.886 0.891 0.85 0.84
σ̂ 0.526 0.295 0.289 0.248 0.243 0.285 0.294
K 55 164 2082 1181 3099 895 1181
FE Quarter Quarter+Zip Quarter×Zip Quarter+Zip Quarter×Zip Quarter+Zip Quarter+Zip

Tokens ŜBCH ŜBCH Ŝc
BCH Permutation

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

NOTE: Models 1-3 do not use any tokens. Models 4 and 5 use tokens in the set ŜBCH . Model

6 uses the set of 2,000 most frequent tokens not in ŜBCH . Model 6 uses the tokens in ŜBCH

but permutes the remarks. All models include the age of the property and indicators for

square footage, bedrooms, bathrooms, and levels. All standard errors are two-way clustered

at the quarter and zip code level. A further description of the controls is provided in 4.

SOURCE : Atlanta MLS and authors’ calculations.
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Table 7: Phoenix Owner Agent

PANEL A: 2000-2013
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT 0.023∗∗∗ 0.010∗∗∗ 0.014∗∗∗ −0.003∗∗ 0.000 0.000 0.010∗∗∗

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
Num. obs. 617616 617616 617616 617616 617616 617616 617616
σ̂ 0.298 0.213 0.196 0.18 0.166 0.203 0.212
K 85 232 7349 1251 8368 1002 1251

PANEL B: 2000-2003
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT 0.036∗∗∗ 0.014∗∗∗ 0.014∗∗∗ 0.005∗∗ 0.006∗∗ 0.011∗∗∗ 0.014∗∗∗

(0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Num. obs. 186212 186212 186212 186212 186212 186212 186212
σ̂ 0.244 0.184 0.182 0.16 0.159 0.178 0.183
K 45 160 1850 1143 2833 904 1143

PANEL C: 2004-2006
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT 0.045∗∗∗ 0.020∗∗∗ 0.020∗∗∗ 0.009∗∗∗ 0.009∗∗∗ 0.015∗∗∗ 0.020∗∗∗

(0.003) (0.002) (0.002) (0.002) (0.001) (0.002) (0.002)
Num. obs. 209728 209728 209728 209728 209728 209728 209728
σ̂ 0.25 0.174 0.17 0.149 0.145 0.168 0.174
K 40 164 1514 1169 2519 924 1169

PANEL D: 2007-2009
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT 0.031∗∗∗ 0.019∗∗∗ 0.021∗∗∗ −0.008∗ −0.006 0.001 0.019∗∗∗

(0.006) (0.004) (0.004) (0.003) (0.003) (0.004) (0.004)
Num. obs. 85497 85497 85497 85497 85497 85497 85497
σ̂ 0.345 0.233 0.216 0.197 0.176 0.217 0.232
K 41 170 1564 814 2485 906 814

PANEL E: 20010-2013
Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7

AGENT 0.006 0.007∗∗ 0.009∗∗∗ −0.004∗ −0.003 −0.006∗∗ 0.007∗∗

(0.004) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
Num. obs. 134156 134156 134156 134156 134156 134156 134156
σ̂ 0.37 0.232 0.225 0.189 0.183 0.217 0.231
K 44 177 2154 1128 3105 810 1128
FE Quarter Quarter+Zip Quarter×Zip Quarter+Zip Quarter×Zip Quarter+Zip Quarter+Zip

Tokens ŜBCH ŜBCH Ŝc
BCH ŜBCH Permutation

∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05

NOTE: Models 1-3 do not use any tokens. Models 4 and 5 use tokens in the set ŜBCH .

Model 6 uses the set of 2,000 most frequent tokens not in ŜBCH . Model 6 uses the tokens in

ŜBCH but permutes the remarks. All models include the age of the property and indicators

for square footage, bedrooms, bathrooms, and levels. A further description of the controls

is provided in 5.

SOURCE : Arizona MLS and authors’ calculations.
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Figure 1: Implicit Prices for Tokens
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Note: This figure plots the implicit prices for the tokens in both the Phoenix and Atlanta

data. The 20 positive and negative tokens with the largest magnitudes are displayed.

SOURCE : Arizona MLS and authors’ calculations.
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Figure 2: Atlanta Case-Shiller Repeat Sales Index
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Figure 3: Phoenix Case-Shiller Repeat Sales Index
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