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Abstract: We revisit the mechanisms that drive tipping behavior by comparing tourists and 
locals in New York City. It is unlikely a tourist will tip as a way of enforcing repeated 
interactions since they are not from the area, while a local may tip as an enforcement mechanism. 
However, if people tip because of social norms, we should see both tourists and locals tipping 
similar amounts. We compare locals and tourists who are theatergoers to control for education 
and income, as these factors are likely to affect tipping behavior. Using data from the New York 
City and Limousine Commission on yellow taxis, we identify tourists as those trips leaving from 
or going to a hotel and theatergoers as trips where the drop off or pick up is near Broadway 
within 30 minutes of the beginning or end of a show. Our results suggest that tourists and 
theatergoers tip more than locals and non-theatergoers, and tourists who are theatergoers tip even 
more, between 0.51% and 0.67% more. These results are robust across specifications and suggest 
that social norms are likely driving tipping behavior. 
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1. Introduction 

Tipping is an important component of many service based industries. Azar (2003) estimates that 

tipping generates $27 billion a year in the restaurant industry alone. While tipping is an 

important part of the service industry and the overall economy, there are still questions about the 

mechanisms that drive people to tip and how much they choose to tip. Azar (2003) p.1084 argues 

that "people tip because this is the social norm and disobeying the norm results in psychological 

disutility."1 Azar (2005) further examines various reasons why people tip and tries to explain 

what causes this behavior. First, he argues against the common belief that people tip as a 

monitoring process. In other words, he argues that people do not tip as a manner of “overseeing” 

the worker’s performance on the job. Azar does argue that tipping is also more common for 

lower-wage occupations when there is a close relationship established between the customer and 

worker, as it would with a country club member and a golf caddy. Finally, he argues that tipping 

is more likely for occupations that provide the most psychological utility for consumers.2 Thus, 

we expect that for occupations like a waiter or a barber tipping will emerge; as customers 

develop a relationship with the worker and, due to the income difference, leaving a tip generates 

utility for the customer. 

 In this paper, we look at the differences in tipping between tourists and locals in the taxi 

industry in NYC. Tourists are unlikely to have repeated interactions with service workers. While 

statistically speaking local customers are unlikely to see the same cab driver twice, they may 

believe they will. Even if the locals know it is unlikely they will ever see a given cab driver 

                                                           
1 Ben-Zion and Karni (1977) are the first authors to look into the social norm of tipping through an economic lens. 
Azar (2004a) provided a formal model corroborating the argument that people tip because it is a social norm. 
Greenberg (2014) looked at tipping in restaurants during the holiday season and found evidence that tipping is likely 
due to some intrinsic motive. 
2 For further information on tipping, Azar (2004b) provides an extensive review of the literature on the beginning of 
tipping norms and the literature that have addressed this issue thus far, and Azar (2007) reviews the literature on 
tipping in restaurants specifically. 
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again, they may want to encourage good drivers to stay in the market and bad drivers to leave, 

and therefore tip to help this outcome occur. Any social norms regarding tipping behavior, 

however, are likely to affect both groups.3 To conduct our analysis, we draw upon a relatively 

novel dataset of all cab rides in NYC obtained from the New York City Taxi and Limousine 

Commission (TLC). Given the detail we have on the cab ride, we are able to infer local residents 

versus tourists based on where people are picked up or dropped off and analyze differences in 

tipping between the two groups. 

 Thus far, the majority of research on tipping has focused on restaurants. However, the 

taxi industry is a large portion of the service industry where tipping is of interest to researchers 

as well.4 TLC (2015) reports there are over 13,000 cabs in the city, with more than 50,000 

drivers servicing 600,000 passengers a day (236 million passengers a year).5 Some existing 

research has examined tipping in the taxi industry. Haggag and Paci (2014) provide evidence that 

the default suggestions given in some taxis (i.e. 20%, 25%, or 30%) when paying with credit 

cards have a positive impact on the amount tipped. Others have looked at how tipping affects the 

allocation of cabs throughout the city. For instance, Flath (2012) argues that if the amount of 

tipping corresponds to the Lindahl pricing of vacant cabs, then it is easier for regulators to 

improve the cab allocation by setting the cab fare to the marginal cost of the occupied taxis.  

 To determine the mechanisms that affect tipping, we examine differences in the tip 

amounts of local residents versus tourists. However, there are likely to be unobservable 

                                                           
3 While in the U.S. this social norm argument is likely to be present and important, in other countries tipping is not 
as common of a practice. As a robustness check, we attempt to separate American versus international tourists to 
address concerns that there may be cultural differences driving tipping behavior. 
4 Ayres et al. (2005) looked at discrimination with regards to tipping taxi drivers using data from Connecticut. 
5 TLC (2015) explains that the most common model of operation is the fleet model, in which a garage owns and 
operates the taxis while drivers lease the cab. In this system, there is the requirement of two shifts a day per taxi. 
Other possible models are an individual owner/operator vehicle and driver-owned vehicle. In the former the 
individual owns and operate the taxi while in the latter the owner of the taxi leases it to other drivers to operate. 
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differences between locals and tourists that we cannot fully control for with our data. For 

example, tourists tend to have higher incomes and therefore we may observe higher tips because 

of an income effect. While our data has detailed information on the cab ride, such as where the 

individual was picked up, dropped off, the time of pick up and drop off, how much the ride cost, 

and how much the individual tipped, we do not know anything about the attributes of the 

passenger. Therefore, if we looked at all trips, there are likely to be many unobservable variables 

present. To address these concerns and to find comparable individuals, we focus on theatergoing 

individuals who are traveling to or from Broadway within 30 minutes of the start or finish of the 

show.6 By focusing on Broadway, we are able to implicitly control for various socioeconomic 

attributes that may affect tipping behavior. As pointed out by Seaman (2006), consumers of the 

performing arts tend to be more educated and have higher incomes. Therefore, by looking at only 

individuals who are coming to/from the Broadway district near show times, we are able to infer 

more about the socioeconomic attributes of the passengers and better control for unobserved 

attributes, such as income and education. 

 To test if tourists tip differently than locals, we need to determine if the passenger is a 

tourist. Using the TLC data, we assume that an individual is a tourist if he/she is picked up or 

dropped off at a hotel location.7 While this measure may not be exact, we believe that it is 

strongly correlated with the attributes we are trying to measure. Any biases in our classification 

of individuals into tourists or theatergoers based on these criteria are unlikely to be correlated 

with tipping behavior, and therefore would not bias our estimates.8 In addition, since tipping may 

                                                           
6 We define Broadway as the area between 6th and 8th Avenues and between 41st and 54th Streets. 
7 Tourists are those who have their ride starting or finishing 0.05 miles from a hotel which were obtained at 
http://excitingny.com/ website. 
8 As a robustness test, we consider areas 0.05 and 0.10 miles from a hotel. We do not find any difference in tipping 
between individuals picked up in this area and those picked up anywhere else in the city, supporting our argument 
that those picked up near hotels are likely to be tourists. 
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be related to the ride and mood of the passenger, we include controls for trip distance, number of 

passengers, average temperature, and snow accumulation.  

 We find that tourists tip more than locals and that theatergoers tip more than non-

theatergoers. Tourists tip 0.03 to 0.05 percent more than passengers who come from other 

locations and theatergoers tip between 0.22 to 0.33 percent more than other passengers. Tourists 

who are also theatergoers have an aggregate tip differential of 0.61 to 0.67 percent from other 

passengers. Given that the average tip is $2.47, our estimates suggest that, on average, tourists tip 

one tenth of a cent (0.1 cent) more than non-tourists, theatergoers tip 0.8 cents more than non-

theatergoers, and tourists who are theatergoers tip 1.65 cents more. While these numbers are 

small, recall that this is only for a selected portion of cab rides, and that these differences 

accumulate over time.  For example, the TLC reports that there are 485,000 trips a day, with 

each shift lasting around 8 to 9.5 hours, and that there are approximately 13,500 medallions. 

Assuming all taxi drivers work the same length shift, this suggests each driver has approximately 

9 to 10 rides a day and 3,600 passengers a year. Thus, this increase in tip amount from tourists 

who are theatergoers represents an additional 16 cents per day or $59.40 per year for taxi drivers. 

 Our results are important for several reasons. First, by identifying two groups – tourists 

and locals – we are able to separate different mechanisms that could drive individuals to tip. 

While locals may tip as a way to encourage good drivers to stay in the market, tourists are 

unlikely to have the same incentives. Because we find that tourists tip more than locals, this 

suggests that it is more likely that it is a social norm that drives people to tip. Furthermore, as 

mentioned earlier, the higher tips from tourists may change the ‘locus’ of taxis in NYC if drivers 

learn and respond. This is important in terms of a locational equilibrium, and locals and/or policy 

makers may want to make adjustments to reach the ideal distribution of taxis. 
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 The remainder of the paper is as follows: section 2 provides a conceptual model and 

discusses various reasons why people may tip; section 3 describes the data used and the 

econometric model; section 4 presents and discusses our results; section 5 concludes and 

discusses the policy implications of our research. 

 

2. Conceptual Model and Motivations for Tipping 

We propose the following conceptual model, based off previous models developed by Parret 

(2006) and Conlin et al. (2003). A consumer i maximizes his/her utility (Ui) after riding in a taxi 

by choosing how much, in percentage of the total amount, he/she is going to tip for that ride (Ti). 

We represent his/her utility function as: 

max
𝑇𝑇𝑖𝑖

𝑈𝑈𝑖𝑖 =  − 𝑝𝑝𝑇𝑇𝑖𝑖 + 𝛾𝛾𝑖𝑖(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖)      (1) 

 Consumer i's utility function captures the trade-off between paying the tip and the utility 

gained by tipping and conforming to the norm. The first term, 𝑝𝑝𝑇𝑇𝑖𝑖, is the monetary disutility 

from leaving a tip, where 𝑝𝑝 is the price of the ride. The second term, 𝛾𝛾𝑖𝑖(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖), is the 

utility a consumer receives from tipping. The function 𝜓𝜓𝑖𝑖 is the service-adjusted tip norm that 

depends on the initial tip belief (𝑡𝑡𝑖𝑖0) and the quality of the service (𝑠𝑠). Note that 𝛾𝛾𝑖𝑖 is dependent 

on 𝛼𝛼𝑖𝑖, which indicates if a consumer is a tourist or local. Thus, the utility in tipping comes from 

both tipping itself and from some psychological utility obtained from complying to a social 

norm. If locals tip to keep good drivers in business, the service-adjusted tip should be lower than 

the initial belief (assuming the default tip percent is this initial belief). In the case of tourists, the 

norm-adherence term is dependent on the cultural background of the individual and willingness 

to conform to the customs of the local community. Therefore, we would not expect a priori that 

these two groups will derive the same utility from tipping. 
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 Like Parret (2006), we assume that the function 𝛾𝛾𝑖𝑖 is increasing and concave in 

(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖) and that the function 𝜓𝜓𝑖𝑖 is increasing and separable. We also assume that the 

utility function is strictly concave. Thus, we obtain the following first and second order 

conditions from the utility maximization problem in Equation (1): 

Λ =  𝜕𝜕𝑈𝑈𝑖𝑖
𝜕𝜕𝑇𝑇𝑖𝑖

=  −𝑝𝑝 + 𝛾𝛾𝑖𝑖′(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖)      (2) 

Π =  𝜕𝜕Λ
𝜕𝜕𝑇𝑇𝑖𝑖

=  𝛾𝛾𝑖𝑖′′(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖)      (3) 

 Because the utility function is strictly concave in tipping, we know that 𝛾𝛾𝑖𝑖′′ < 0. 

Therefore, we know that Π < 0. Using the implicit function theorem, we can obtain the 

following comparative statics:       

𝜕𝜕𝑇𝑇𝑖𝑖 𝜕𝜕𝜕𝜕⁄ =  − {𝛾𝛾𝑖𝑖′′(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖)[𝜕𝜕𝜓𝜓𝑖𝑖 𝜕𝜕𝜕𝜕⁄ |𝛼𝛼𝑖𝑖] Π} > 0⁄       (4) 

𝜕𝜕𝑇𝑇𝑖𝑖 𝜕𝜕𝑡𝑡𝑖𝑖0⁄ =  − {𝛾𝛾𝑖𝑖′′(𝑇𝑇𝑖𝑖 − 𝜓𝜓𝑖𝑖(𝑡𝑡𝑖𝑖0, 𝑠𝑠)�𝛼𝛼𝑖𝑖)[𝜕𝜕𝜓𝜓𝑖𝑖 𝜕𝜕𝑡𝑡𝑖𝑖0⁄ |𝛼𝛼𝑖𝑖] Π} > 0⁄       (5) 

 Although the expected sign for each of these partial derivatives is the same for locals and 

tourists, we are unable to make any claim about the magnitude of these partials. Therefore, as 

mentioned earlier this section, which effect is larger is theoretically ambiguous and it is an 

empirical question as to which group will tip more. Our empiric analysis will allow us to shed 

light on this issue and the possible mechanisms present regarding tipping behavior.  

 

3.  Data and Econometric Model 

Data 

To determine whether tourists tip more or less than local consumers, we use the New York City 

Taxi and Limousine Commission (TLC) dataset which contains detailed data on all taxis ride in 

NYC between January 2014 and July of 2015. Given the extremely large number of observations 
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in this dataset, we restrict ourselves to a random 10% sample, containing 24,219,485 

observations.  The data set includes 6-digit latitude and longitude pick-up and drop-off locations, 

miles covered, how the passenger paid, time spent in the cab, number of passengers, fare amount, 

tip amount, and a breakdown of costs (i.e. tolls and any MTA taxes). The data is available for all 

of 2014 and half of 2015.9 The dataset contains the population of all taxi rides during this time 

period.  

To conduct our analysis, we must first identify which passengers are tourists and which 

are local consumers. As the TLC dataset provides the geocoded pick-up and drop-off location for 

each trip, we use this information in order to identify an individual as a tourist. Specifically, we 

assume that passengers who were either picked up or dropped off within 0.05 miles 

(approximately 264 feet) of a hotel are tourists.  This cutoff is comparable to the length of an 

average block in NYC.  As such, our cutoff reflects the notion that most tourists leaving a hotel 

will hail a cab within one block of the hotel. To determine where hotels are located, we used the 

http://excitingny.com/ website to obtain the location of the 363 listed hotels. To differentiate 

quality of the hotels, we use the Forbes classification and match the 4- and 5-star hotels to our 

list. We assume that any individuals who were not picked up or dropped off close to a hotel are 

not tourists.10 

As mentioned earlier, there are many things that affect tipping behavior and while the 

TLC dataset has detailed information on the ride, it does not contain information on the 

passenger. Given that individual attributes are likely to affect tipping behavior, we restrict our 

                                                           
9 This data can be downloaded at http://www.nyc.gov/ 
10 We acknowledge that tourists may take cabs to get from one site to another that is not a hotel or the theater 
district. However, we do not believe this will bias our results due to of the time of the day restriction we make 
(roughly, between 7pm and 8pm and 9:30pm and 10:30pm). During this time, it is more likely that tourists are 
leaving the hotel to go to a show or returning to the hotel from a show. If we were using every hour of the day, this 
would more of a concern. 

http://www.nyc.gov/
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sample so that we can proxy for many socioeconomic variables. In particular, we focus on 

individuals who are the most likely to be consumers of the performing arts. Seaman (2006) and 

Lévy-Garboua and Montmarquette (2003) conduct an extensive literature review on the demand 

for the arts and conclude that people who consume performing arts tend to be more educated and 

have higher incomes. Therefore, we focus on people who are going to or from the theater district 

as a way of implicitly controlling for these socioeconomic attributes. We define the theater 

district, or Broadway, as the area within the 6th to 8th Avenues, between 41st and 54th Streets.11 

We focus on the performing arts because we are better able to identify theatergoers as there are 

clear start and end times for the shows, which is not true for art galleries or museums. We restrict 

our sample to cab rides that occur within 30 minutes before and after a show starts. To do this, 

we use the average starting and finishing time of a Broadway show, presented in Table 1.12 By 

imposing this time constraint, we restrict our sample to individuals who are the most likely to be 

going to Broadway for a show compared to individuals who are going to the area for some other 

purpose.   

Because shows occur all day Sundays and are not performed on Mondays, we exclude 

Sunday and Monday cab rides. According to the Broadway schedule,13 only 6 out of 23 shows 

are performed on Mondays while from Tuesday to Saturday at least 20 out of the 22 shows are 

performed each day.14 Because the tipping data are generated for credit card payments only and 

do not include cash tips, we restrict our sample to those individuals who paid by credit card. 

After making all these restrictions, our sample still includes more than 2 million observations.  

                                                           
11 http://www.nyc.com/visitor_guide/theater_district.702514/editorial_review.aspx 
12 We obtain the list of shows and their schedule from the Broadway website. 
13 http://www.playbill.com/article/weekly-schedule-of-current-broadway-shows-com-142774 
14 Tuesday one show is dark and Wednesday 2 shows are dark. Sunday also has some shows that are dark, but this 
day is already excluded given that shows run throughout the day. 



9 
 

Figure 1 presents the distribution of rides by hour for cab rides going to Broadway on 

Tuesday through. From Tuesday to Friday we observe a spike around 7pm (hour 19), especially 

on Fridays which we would expect to be the evening when the most individuals attend a show.  

There are fewer morning commutes on Saturday, but Saturday evening still displays a spike in 

taxi rides around 7pm when most shows begin. 

Another factor that may influence tipping behavior is the mood of passenger, possibly 

due to weather conditions. For example, if it is raining, cab passengers may be overly 

appreciative because the individual was able to avoid walking in the rain and may tip more than 

he would on a sunny day. We obtain data for the average temperature, precipitation, and snow 

accumulation from National Oceanic and Atmospheric Administration (NOAA) and control for 

the effects of weather. Table 2 presents the descriptive statistics for all variables in our dataset15 

and Appendix A1 provides a description and the source of each variable.  

Before performing our econometric analysis, it is interesting to explore our sample with 

respect to our outcome variable, i.e. tip amount. To do so, we map the tipping patterns of locals 

and tourists to see if they are similar. Figures 2 and 3 show the tip amounts for locals and 

tourists, respectively; and Figures 4 and 5 show the tipping percent of the fare amount for locals 

and tourists, respectively. The four maps suggest that there are differences between local and 

tourists’ behavior in tipping, as the hot spots of tipping vary between the two groups.  More 

specifically, locals tip the most in the Midtown area, whereas tourists tip more in the southwest 

corner of the island and near Times Square.  The tip percentage figures (4 and 5) show a 

different pattern. The tip percent hots spots for tourists are spread all over the city, possibly 

because hotels are spread around New York. As for locals, we notice three hot spots: one in the 

                                                           
15 Appendix A1 provides a full description and the source of each of our variables. 
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east of Central Park, one in Midtown and one in the Chelsea-Gramercy area. The Midtown area 

is known for business and the other two are known residential areas in the city. 

 

Econometric Model 

To estimate the effect of these characteristics on tip amount, we estimate the following model: 

𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 =  𝛽𝛽0 + 𝛽𝛽1𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 + 𝛽𝛽2𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖 + 𝛽𝛽3(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑖𝑖 ∗ 𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖) + 𝑋𝑋𝑖𝑖𝛿𝛿 + 𝜀𝜀𝑖𝑖 

Where tipi is the tip amount paid on trip i. Touristi is an indicator variable equal to 1 if we 

classify the individual as a tourist. Theateri is an indicator equal to one if we classify the 

individual as a theatergoer. We also include a variety of control variables, Xi, including trip 

distance, passenger count, if the passenger was dropped off within five minutes of the start of the 

show, average temperature, new snow fall, and snow depth. 𝜀𝜀𝑖𝑖 is an idiosyncratic error term. 

 In this model, 𝛽𝛽1 gives the difference in tip amount for tourists relative to all other 

passengers and 𝛽𝛽2 is the difference in tip amount for theatergoers relative to other passengers. 

Our primary coefficient of interest, 𝛽𝛽3, gives the relative difference in tip amount between 

tourists going to the theater district and all others. To further control for possible income 

differences of the passengers, we use the quality of the hotel as a proxy for the wealth and 

preferences of the customers that we classify as tourists. We include dummy variables if the 

passenger was coming from/going to a top hotel, i.e., a hotel rated a 4- or 5-star hotel by Forbes. 

 Initially, we estimate the above model using OLS. However, there are a lot of zeros 

present (approximately one third of passengers leave no tip) suggesting that the data may be 

truncated. To address this, we first employ a Tobit model to account for the censoring at zero as 

the observed zeros may be true zeros, i.e., they represent individuals who choose not to tip due to 

the level of service received. However, the Tobit model does not explicitly address a potential 
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sample selection wherein individuals who chose not to tip may be different from individuals who 

do tip.16 To address this, we use the Heckman two-stage sample selection correction; the 

decision to tip is modeled in the first state and the conditional probability of tipping is used to 

control for potential sample selection in the second stage estimates. The Heckit model has been 

used many times in the previous literature to address this selection problem (see, for example, 

Heckman and Sedlacek, 1985; Badel and Peña, 2010; Winter et al, 2012; and Jiménez et al, 

2014).  

 

4.  Results 

Our main results are presented in Tables 3 to 6, and only show the variables of interest: whether 

the individual is a tourist, going to the theater district, and indicators for the quality of the 

hotel.17 First, we present our baseline OLS results in Table 3. Column (1) has no controls other 

than the indicators for hotel, theatergoer, and their interaction. Column (2) includes trip controls 

such as trip distance, number of passengers, and if the passenger was dropped off within 5 

minutes of a show beginning. Column (3) includes the weather controls (average temperature, 

precipitation, new snow, and snow depth). Lastly, Column (4) differentiates high quality hotels, 

those with 4- or 5-stars on the Forbes website. 

 Looking across the four columns of Table 3, we see that the coefficients are similar 

across the specifications, though we have a higher R2 with the additional controls. Given that the 

coefficients are similar, we focus our discussion on Column (4) as this includes the most control 

variables. We see in Column (4) that tourists tip approximately 0.06 percent more than non-

tourists and that theatergoers tip 0.15 to 0.19 percent more than non-theatergoers, depending if 

                                                           
16 For a more detailed discussion on the difference between the models see Humphreys (2015). 
17 Full results are available from the authors upon request. 
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they are going to or coming back from the theater. Tourists who go to the theater tip even more, 

approximately 0.41 to 0.47 percent. Tourists at high end hotels tip more when they leave the 

hotel, but not when they return.  

 Our results corroborate the literature suggesting education and income are related to 

tipping. For example, Azar (2005) argues that tipping is created in occupations where the 

consumer can show gratitude or when there is a wage differential between the consumer and 

worker. Therefore, as theatergoers are likely to have higher education levels and higher incomes, 

we expect they will tip more than non-theatergoers. With regards to tourists, the results suggest 

not only that they incorporate social norms, but that they are willing to tip more than locals, 

which may suggest a higher level of gratitude or an increased willingness to spend when on 

vacation.  

 Results using a Tobit model are presented in Table 4. Looking at Table 4, we see that the 

coefficients have a similar pattern with regards to the sign of the effect and statistical 

significance. However, the estimated magnitude of the effect is higher than the OLS counterparts 

in Table 3, suggesting that the OLS estimates have a slight downward bias due to the zeros, 

consistent with our expectations. 

However, as we can see from the distribution of tips shown in Figure 6, there is a 

significant gap in the distribution between those that tip zero and those that tip a positive amount. 

This type of distribution suggests that it is not so much censoring at zero that is the problem, but 

that there is a selection process between zero and positive values. Therefore, a selection model, 

such as a Heckit model, is likely to be the appropriate specification. The results for the Heckman 
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selection model are presented in Table 5.18 As we see in Table 5, the results are similar in terms 

of the sign and significance levels of the coefficients to Tables 3 and 4. Tourists tip between 0.03 

and 0.05 percent more, theatergoers tip 0.22 to 0.33 percent more, and tourists who are 

theatergoers tip 0.61 to 0.67 percent more. Tourists in 4- and 5-star hotels tip 0.10 percent more, 

and again only when they are leaving the hotel.19  

At first glance, the results above appear to be small in magnitude. However, when 

compared to the results of other determinants20 of tipping, such as number of passengers (-

0.045), trip distance (-0.060) and weather (new snow: 0.051; avg. temp: -0.001), the above 

effects are similar in magnitude. Therefore, we can affirm that these differentials between 

tourists and locals are indeed important relative to other variables. Moreover, it is important to 

remember that our results are for credit card transactions only, and these effects may differ if 

cash payments are included. 

 

Falsification Test 

One concern with our results thus far is that the dummy variable identifying tourists is not 

identifying only tourists but rather anyone who happens to hail a cab near a hotel. In Table 6, we 

present a falsification test similar to Linden and Rokoff (2008). As previously discussed, we 

identified tourist as those who were picked up or dropped off within 0.05 miles of a hotel. Now, 

we identify a comparison group: those individuals picked up or dropped off between 0.05 and 

                                                           
18 As an additional robustness check we used a double hurdle model. In this model, the observed zeros are true 
corner solutions. The results show the signs remain the same and they are still statistically significant. The results 
can be provided upon request. 
 
19 We have also estimated Probit and Logit models and the results follow the same pattern.  These results are not 
shown in the interest of space, but are available from the authors upon request. 
20 The results in parenthesis are for the Heckman model for trip distance and weather and the Tobit model for the 
number of passengers.  
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0.1 miles of a hotel.  In other words, we are comparing those individuals who are picked up or 

dropped off on the immediately adjacent blocks to a hotel.   

We believe that those individuals who are picked up or dropped off within 0.05 miles of a 

hotel are more likely to be tourists that those 0.05 to 0.1 miles from a hotel because they are 

closer to the hotel. However, if we are not picking up tourists but rather locals who happen to be 

near hotels then both groups should behave in a similar manner. In Table 6, we do not find a 

difference between pickups and drop offs slightly further away from the hotel from the rest of the 

city. This result provides additional support that we are capturing tourists versus locals using our 

identification scheme. 

 

Cultural Differences in Social Norms  

Because we do not have information on the passengers, it is not possible to control for 

differences in cultural norms which may be correlated with tipping behavior. Specifically, 

tipping tends to be an American custom, so one reason we may see differences in behavior is that 

there are cultural differences between the individuals we classify as locals versus tourists. To 

mitigate this problem, we randomly selected 100 hotels out of the 363 hotels in our list, and 

scraped hotel reviews using tripadvisor.com for the 2014 period. We use the language of the 

review in order to infer the native language of the reviewer and whether the individual is likely 

to be a domestic or international guest. We then split our sample into hotels with more 

international guests and hotels with more domestic guests. From the 100 hotels we obtained 

information from, we classified 32 hotels as having primarily international patrons and 68 as 

primarily domestic.  



15 
 

 Table 7 shows the results considering only the tourists for these 100 hotels and the non-

tourist passengers. Focusing on the Heckit model in Column (3), we see that tourists coming 

from hotels with more international guests going to the theater district, tip more than tourists 

coming from hotels with more domestic guests. When returning to the hotel, tourists returning to 

more domestic hotels tip more than tourists returning to more international hotels. Overall, we do 

not find systematic evidence that international customers are tipping less, suggesting that tourists 

are learning the local norms and adapting.21  

 

5.  Conclusions and Policy Implications 

In this paper, we examined if there are differences in tipping behavior between locals and 

tourists. To accomplish this, we focus on New York City and use a novel dataset from the Taxi 

and Limousine Commission (TLC). Using geo-coordinates of the pick-up and drop-off locations, 

we identify which passengers are more likely to be tourists. Our analysis suggests that tourists tip 

more than locals and that theatergoers tip more than non-theatergoers. Specifically, the results 

show that tourists tip 0.03 to 0.05 percent more, theatergoers tip 0.22 to 0.33 percent more, and 

tourists who are theatergoers tip between 0.61 to 0.67 percent more. In monetary terms, tourists 

who are theatergoers would tip 1.66 cents more than a local, where the average tip is $2.47 

dollars. These results are consistent across several specifications, in which we control for 

possible sample selection and censoring. 

There are three main policy implications of our analysis. First, because tourists tip more 

than locals, the impact of tourists on a local economy may be underestimated, as tips are 

frequently not reported income and therefore are not included when calculating multiplier effects 

                                                           
21 The log-likelihood ratio test comparing the specification with the split sample of hotels between domestic and international 
hotels versus a specification in which we do not make such split shows that the former is a preferred specification. This suggests 
our two hotels sample are different and we gain extra and useful information by splitting the sample. 



16 
 

of tourism on the economy. Second, we find evidence that wealthier and more educated people 

tip more. This suggests that one way to attract such individuals to an area is to provide cultural 

amenities similar to those found on Broadway. Third, if the extra tip is sufficient to change the 

behavior of taxi drivers, these individuals might change their locus of work. This suggests that 

locals need to adopt to correct this change by taxis, or that policy makers may need to get 

involved to help correct this inefficiency. 

Future research should focus on obtaining more information from both passengers and 

drivers, as well as information on cash tipping. One of the caveats of our analysis is that we only 

observe credit card tips. Therefore, the difference in tipping behavior we have observed may 

change once we account for those who pay or tip in cash. With better information on passengers 

and drivers, we would be able to tease out the determinants of tipping in a more comprehensive 

way. Also, information on cash tips would provide better measurement of behavior, since then 

we could control for the payment method which the previous literature (Lynn, 2006) has found 

influences tipping.  
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Figure 1: Trips Going to Theater District by 15 Minute Interval 

 
 

 

Figure 2 – Tipping amount pattern of locals 

 
Note: The scale goes from blue to orange. Areas with higher concentration of orange means the higher the tip 

amount paid. 
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Figure 3 – Tipping amount pattern of tourist 

 
Note: The scale goes from blue to orange. Areas with higher concentration of orange means the higher the tip 

amount paid. 

 

 

Figure 4 – Tipping percent pattern of locals 

 
Note: The scale goes from blue to orange. Areas with higher concentration of orange means the higher the tip 

percent paid. 
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Figure 5 – Tipping percent pattern of tourist 

 
Note: The scale goes from blue to orange. Areas with higher concentration of orange means the higher the tip 

percent paid. 

 
Figure 6 – Histogram of tip percentage  
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Table 1 – Day and Time of Broadway Shows 

Weekday Starting Time Ending Time 
Tuesday 19h30 / 07:30pm 22h00 / 10:00pm 

Wednesday 20h00 / 08:00pm 22h00 / 10:30pm 
Thursday 19h30 / 07:30pm 22h00 / 10:00pm 

Friday 20h00 / 08:00pm 22h00 / 10:30pm 
Saturday 14:00 / 02:00pm 16h00 / 04:00pm 

 
20h00 / 08:00pm 22h00 / 10:30pm 
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Table 2 – Descriptive Statistics 

Statistic  N  Mean  St. Dev.  Min  Max  
Number of Passenger 2,120,061 1.688 1.343 1.000 6.000 
Trip Distance 2,120,061 2.873 2.888 0.200 19.400 
Fare Amount 2,120,061 12.365 8.359 3.500 52.000 
Tip Amount 2,120,061 2.471 1.912 0.000 17.400 
Total Amount 2,120,061 16.235 10.579 4.000 86.190 
To Theater District 2,120,061 0.068 0.251 0.000 1.000 
From Theater District 2,120,061 0.096 0.294 0.000 1.000 
From a Hotel 2,120,061 0.199 0.400 0.000 1.000 
To a Hotel 2,120,061 0.166 0.372 0.000 1.000 
Ave. Temperature 2,120,061 51.378 19.255 10.500 84.500 
Precipitation 2,120,061 0.137 0.384 0.000 4.970 
New Snow 2,120,061 0.155 0.873 0.000 11.000 
Snow Depth 2,120,061 1.651 3.808 0.000 19.000 
Last Minute 2,120,061 0.003 0.057 0.000 1.000 
From Top Hotel 2,120,061 0.016 0.124 0.000 1.000 
To Top Hotel 2,120,061 0.011 0.105 0.000 1.000 
Tip Percentage 2,120,061 0.151 0.048 0.000 0.769 
Tip Dummy 2,120,061 0.971 0.167 0.000 1.000 
From National 1,646,593 0.050 0.218 0.000 1.000 
To National  1,646,593 0.041 0.197 0.000 1.000 
From International 1,646,593 0.031 0.174 0.000 1.000 
To International 1,646,593 0.026 0.159 0.000 1.000 
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Table 3 – OLS Results 

 
Dependent Variable: Tip Percentage 

 
(1) (2) (3) (4) 

From Hotel 0.089*** 0.065*** 0.065*** 0.058*** 

 
(0.009) (0.009) (0.009) (0.009) 

To Hotel 0.078*** 0.050*** 0.050*** 0.049*** 

 
(0.010) (0.010) (0.010) (0.010) 

To Theater 0.150*** 0.154*** 0.147*** 0.154*** 

 
(0.015) (0.016) (0.015) (0.016) 

From Theater 0.207*** 0.195*** 0.194*** 0.195*** 

 
(0.013) (0.013) (0.013) (0.013) 

From Hotel*To Theater 0.278*** 0.200*** 0.199*** 0.200*** 

 
(0.032) (0.032) (0.032) (0.032) 

To Hotel*From Theater 0.281*** 0.227*** 0.226*** 0.226*** 

 
(0.030) (0.030) (0.030) (0.030) 

To Top Hotel 
   

0.021 

    
(0.032) 

From Top Hotel 
   

0.086*** 

    
(0.028) 

Cab Controls  No Yes Yes Yes 
Weather Controls  No No Yes Yes 
Observations  2,120,061 2,120,061 2,120,061 2,120,061 
R2 0.001 0.003 0.003 0.003 
Adjusted R2 0.001 0.003 0.003 0.003 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Cab controls: Trip Distance, Number of Passengers and Last Minute; Weather 
controls: Ave. Temperature, Precipitation, New Snow and Snow Depth. Top Hotels are those with four or five stars. 
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Table 4 – Tobit Results 

 
Dependent Variable: Tip Percentage 

 
(1) (2) (3) (4) 

From Hotel 0.093*** 0.068*** 0.068*** 0.061*** 

 
(0.009) (0.009) (0.009) (0.009) 

To Hotel 0.079*** 0.050*** 0.050*** 0.050*** 

 
(0.010) (0.010) (0.010) (0.010) 

To Theater 0.135*** 0.139*** 0.132*** 0.140*** 

 
(0.015) (0.015) (0.015) (0.015) 

From Theater 0.206*** 0.193*** 0.192*** 0.194*** 

 
(0.013) (0.013) (0.013) (0.013) 

From Hotel*To Theater 0.270*** 0.191*** 0.190*** 0.190*** 

 
(0.030) (0.030) (0.030) (0.030) 

To Hotel*From Theater 0.274*** 0.218*** 0.217*** 0.218*** 
 (0.029) (0.029) (0.029) (0.029) 
To Top Hotel    0.020 
    (0.033) 
From Top Hotel    0.085*** 
    (0.031) 
logSigma 1.603*** 1.602*** 1.602*** 1.602*** 

 
(0.0003) (0.0003) (0.0003) (0.0003) 

Cab Controls  No Yes Yes Yes 
Weather Controls  No No Yes Yes 
Observations 2,120,061 2,120,061 2,120,061 2,120,061 
Log Likelihood -6,326,800 -6,324,090 -6,323,941 -6,323,933 
Akaike Inf. Crit. 12,653,616 12,648,201 12,647,909 12,647,900 
Bayesian Inf. Crit. 12,653,717 12,648,339 12,648,085 12,648,114 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Cab controls: Trip Distance, Number of Passengers and Last Minute; Weather 
controls: Ave. Temperature, Precipitation, New Snow and Snow Depth. Top Hotels are those with four or five stars. 
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Table 5 – Heckit Results 

 
Dependent Variable: Tip Percentage 

 
(1) (2) (3) (4) 

From Hotel 0.053*** 0.035*** 0.035*** 0.027*** 

 
(0.008) (0.008) (0.008) (0.008) 

To Hotel 0.070*** 0.049*** 0.050*** 0.048*** 

 
(0.008) (0.008) (0.008) (0.009) 

To Theater 0.331*** 0.328*** 0.328*** 0.328*** 

 
(0.013) (0.014) (0.013) (0.014) 

From Theater 0.229*** 0.220*** 0.219*** 0.221*** 

 
(0.011) (0.011) (0.011) (0.011) 

From Hotel*To Theater 0.388*** 0.332*** 0.331*** 0.331*** 

 
(0.028) (0.028) (0.028) (0.028) 

To Hotel*From Theater 0.380*** 0.342*** 0.341*** 0.341*** 

 
(0.026) (0.026) (0.026) (0.026) 

To Top Hotel 
   

0.025 

    
(0.028) 

From Top Hotel 
   

0.100*** 

    
(0.024) 

Cab Controls   No   Yes   Yes   Yes  
Weather Controls   No   No   Yes   Yes  
Observations 2,120,061 2,120,061 2,120,061 2,120,061 
Log Likelihood -6,122,070 -6,120,302 -6,120,112 -6,120,103 
𝜌𝜌 -0.027 -0.026 -0.027 -0.027 

 
(0.018) (0.018) (0.018) (0.018) 

  Selection Equation 
Number of Passenger  -0.031***   -0.031***   -0.031***   -0.031***  
     (0.003) (0.003) (0.003) (0.003) 
Precipitation -0.011* -0.011* -0.011* -0.011* 
         (0.005) (0.005) (0.005) (0.005) 
Constant 1.958*** 1.958*** 1.958*** 1.958*** 
      (0.003) (0.003) (0.003) (0.003) 

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Cab controls: Trip Distance and Last Minute; Weather controls: Ave. 
Temperature, New Snow and Snow Depth. Top Hotels are those with four or five stars. 
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Table 6 – Falsification Results 
 Dependent Variable: Tip Percentage 

 
OLS Tobit Heckit 

From Hotel (t < 0.05) 0.058*** 0.061*** 0.027*** 

 
(0.009) (0.009) (0.008) 

To Hotel (t < 0.05) 0.049*** 0.050*** 0.048*** 

 
(0.010) (0.010) (0.009) 

To Theater 0.154*** 0.140*** 0.328*** 

 
(0.016) (0.015) (0.014) 

From Theater 0.195*** 0.194*** 0.221*** 

 
(0.013) (0.013) (0.011) 

From Hotel*To Theater (t < 0.05) 0.200*** 0.190*** 0.331*** 

 
(0.032) (0.030) (0.028) 

To Hotel*From Theater (t < 0.05) 0.226*** 0.218*** 0.341*** 
 (0.030) (0.029) (0.026) 
From Hotel (t > 0.05 & t <0.10) -0.248 -0.272 0.007 

 
(0.274) (0.268) (0.240) 

To Hotel (t > 0.05 & t <0.10) 0.581** 0.587** 0.548** 

 
(0.294) (0.267) (0.255) 

From Hotel*To Theater (t > 0.05 & t <0.10) 0.577 0.654 -0.285 

 
(1.023) (1.060) (0.878) 

To Hotel*From Theater (t > 0.05 & t <0.10) -0.528 -0.560 -0.193 

 
(1.094) (1.005) (0.959) 

Cab Controls   Yes  Yes   Yes  
Weather Controls   Yes  Yes  Yes  
Observations 2,120,061 2,120,061 2,120,061 
Log Likelihood  -6,323,391 -6,120,100 
R2 0.003 

  Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Cab controls: Trip Distance and Last Minute; Weather controls: Ave. 
Temperature, New Snow and Snow Depth. Top Hotels are those with four or five stars. 
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Table 7 – International vs. National Results 
 Dependent Variable: Tip Percentage 

 
OLS Tobit Heckit 

To Theater 0.133*** 0.121*** 0.289*** 

 
(0.018) (0.018) (0.016) 

From Theater 0.194*** 0.193*** 0.205*** 

 
(0.015) (0.015) (0.013) 

From National -0.005 -0.003 -0.033** 

 
(0.019) (0.019) (0.016) 

To National 0.101*** 0.102*** 0.092*** 

 
(0.021) (0.021) (0.018) 

From National*To Theater  0.283*** 0.274*** 0.416*** 

 
(0.069) (0.065) (0.060) 

To National *From Theater 0.165** 0.154** 0.309*** 
 (0.066) (0.064) (0.058) 
From International 0.073*** 0.076*** 0.046** 

 
(0.023) (0.024) (0.020) 

To International -0.074*** -0.074*** -0.072*** 

 
(0.025) (0.026) (0.022) 

From International*To Theater  0.359*** 0.353*** 0.459*** 

 
(0.091) (0.086) (0.079) 

To International *From Theater 0.234*** 0.230*** 0.300*** 

 
(0.086) (0.083) (0.075) 

Cab Controls   Yes  Yes   Yes  
Weather Controls   Yes  Yes  Yes  
Observations 1,646,593 1,646,593 1,646,593 
Log Likelihood  -4,910,704 -4,752,800 
R2 0.003 

  Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01; Cab controls: Trip Distance and Last Minute; Weather controls: Ave. 
Temperature, New Snow and Snow Depth. Top Hotels are those with four or five stars. 

 

 

 



Appendix 1 - Description and Source of Variables 

Variable  Description  Source   
Number of Passenger  Number of passengers in trip TLC 
Trip Distance  Total trip distance TLC 
Pickup Longitude  Pick-up longitude for trip TLC 
Pickup Latitude  Pick-up latitude for trip TLC 
Dropoff Longitude  Drop-off longitude for trip TLC 
Dropoff Latitude  Drop-off latitude for trip TLC 
Fare Amount  Trip fare amount TLC 
Tip Amount  Tip amount paid TLC 
Total Amount  Total amount paid TLC 
To Theater District  Binary variable, equals 1 if drop-off location is theater district TLC \Broadway 
From Theater District  Binary variable, equals 1 if pick-up location is theater district TLC \Broadway 
From a Hotel  Binary variable, equals 1 if pick-up location is 0.05 miles from hotel TLC \Hotel 
To a Hotel  Binary variable, equals 1 if drop-off location is 0.05 miles from hotel TLC \Hotel 
From Top Hotel  Binary variable, equals 1 if pick-up location is four or five star hotel TLC \Forbes 
To Top Hotel  Binary variable, equals 1 if drop-off location is four or five star hotel TLC \Forbes 
Max Temperature  Daily maximum temperature in Fahrenheit NOAA 
Min Temperature  Daily minimum temperature in Fahrenheit NOAA 
Avg. Temperature  Daily average temperature in Fahrenheit NOAA 
Precipitation  Daily precipitation in inches NOAA 
New Snow  Daily snowfall in inches NOAA 
Snow Depth  Daily snow depth in inches NOAA 

Last Minute  
Binary variable, equals 1 if drop-off time is 5 min before or after 

show Taxi Data\Broadway 
Tip Percentage  Percentage of tip from total amount paid TLC 
Tip Dummy  Binary variable, equals 1 if there is a tip TLC 
Note: TLC = New York City Taxi and Limousine Commission; Broadway = www.broadway.com;  Hotel = http://excitingny.com/ny-hotel-list.shtml; Forbes = 
Forbes hotel classification; NOAA = National Oceanic and Atmospheric Administration  
 


